30 resultados para purine

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The duplex- and triplex-formation properties of the tricyclo-DNA purine decamer 5'p-gagaaggaaa-3' as a single strand or as part of a hairpin duplex with corresponding parallel and antiparallel pyrimidine DNA and RNA complements, as well as with antiparallel purine DNA and RNA complements, were investigated by UV melting curve analysis, circular dichroism spectroscopy, and gel mobility shift experiments. It was found that tricyclo-DNA forms very stable duplexes with the pyrimidine RNA and DNA complements not only in the Watson-Crick pairing mode, but also in the Hoogsteen one. Below pH 6.0, the tc-DNA/DNA and tc-DNA/RNA Hoogsteen duplexes were found to be more stable than the corresponding Watson-Crick DNA duplexes. Triplexes of the hairpin structure with parallel pyrimidine complements revealed even stronger Hoogsteen pairing relative to the duplexes, presumably due to structural preorganization phenomena. Triplex formation with antiparallel pyrimidine and purine third strands (reversed-Hoogsteen motif) could not be observed and seem to be unstable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new nucleoside designed to enhance triplex stability has been synthesised in 15 steps starting from sugar 2. This pathway contains the sugar derivative 9 which is a useful intermediate for the introduction of other natural and unnatural bases into the 2'-aminoethoxy nucleoside containing scaffold

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of a series of triplex forming oligonucleotides (TFOs) containing alpha- and beta-thymidine, alpha- and beta-N7-hypoxanthine, and alpha- and beta- N7 and N9 aminopurine nucleosides, designed to bind to T-A inversion sites in DNA target sequences was performed. Data obtained from gel mobility assays indicate that t-A recognition in the antiparallel triple-helical binding motif is possible if the nucleoside alpha N9-aminopurine is used opposite to the inversion site in the TFO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant Ki = 20 to 35 μM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Giardia lamblia is a common intestinal-dwelling protozoan and causes diarrhoea in humans and animals worldwide. For several years, a small number of drugs such as the 5-nitroimidazole metronidazole (MET) or the thiazolide nitazoxanide (NTZ) have been used for chemotherapy against giardiasis. However, various pre-clinical and clinical investigations revealed that antigiardial chemotherapy may be complicated by emergence of giardial resistance to these drugs. The present study addressed the question if isoflavones with antigiardial activity, such as daidzein (DAI) or formononetin (FOR), may serve as alternative compounds for treatment of giardiasis. For this purpose, the potential of G. lamblia clone WB C6 to form resistance to FOR and related isoflavones was tested in vitro. In the line of these experiments, a clone (C3) resistant to isoflavones, but sensitive to MET and NTZ, was generated. Affinity chromatography on DAI-agarose using cell-free extracts of G. lamblia trophozoites resulted in the isolation of a polypeptide of approximately 40 kDa, which was identified by mass spectrometry as a nucleoside hydrolase (NH) homologue (EAA37551.1). In a nucleoside hydrolase assay, recombinant NH hydrolysed all nucleosides with a preference for purine nucleosides and was inhibited by isoflavones. Using quantitative RT-PCR, the expression of genes that are potentially involved in resistance formation was analysed, namely NH and genes encoding variant surface proteins (VSPs, TSA417). The transcript level of the potential target NH was found to be significantly reduced in C3. Moreover, drastic changes were observed in VSP gene expression. This may indicate that resistance formation in Giardia against isoflavones is linked to, and possibly mediated by, altered gene expression. Taken together, our results suggest FOR or related isoflavones as an alternative antigiardial agent to overcome potential problems of resistance to drugs like MET or NTZ. However, the capacity of Giardia to develop resistance to isoflavones can potentially interfere with this alternative treatment of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei rhodesiense and T. b. gambiense are the causative agents of sleeping sickness, a fatal disease that affects 36 countries in sub-Saharan Africa. Nevertheless, only a handful of clinically useful drugs are available. These drugs suffer from severe side-effects. The situation is further aggravated by the alarming incidence of treatment failures in several sleeping sickness foci, apparently indicating the occurrence of drug-resistant trypanosomes. Because of these reasons, and since vaccination does not appear to be feasible due to the trypanosomes' ever changing coat of variable surface glycoproteins (VSGs), new drugs are needed urgently. The entry of Trypanosoma brucei into the post-genomic age raises hopes for the identification of novel kinds of drug targets and in turn new treatments for sleeping sickness. The pragmatic definition of a drug target is, a protein that is essential for the parasite and does not have homologues in the host. Such proteins are identified by comparing the predicted proteomes of T. brucei and Homo sapiens, then validated by large-scale gene disruption or gene silencing experiments in trypanosomes. Once all proteins that are essential and unique to the parasite are identified, inhibitors may be found by high-throughput screening. However powerful, this functional genomics approach is going to miss a number of attractive targets. Several current, successful parasiticides attack proteins that have close homologues in the human proteome. Drugs like DFMO or pyrimethamine inhibit parasite and host enzymes alike--a therapeutic window is opened only by subtle differences in the regulation of the targets, which cannot be recognized in silico. Working against the post-genomic approach is also the fact that essential proteins tend to be more highly conserved between species than non-essential ones. Here we advocate drug targeting, i.e. uptake or activation of a drug via parasite-specific pathways, as a chemotherapeutic strategy to selectively inhibit enzymes that have equally sensitive counterparts in the host. The T. brucei purine salvage machinery offers opportunities for both metabolic and transport-based targeting: unusual nucleoside and nucleobase permeases may be exploited for selective import, salvage enzymes for selective activation of purine antimetabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.